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Abstract. A multiple scattering formalism is developed for the BGK Boltzmann equation. The
formalism is equivalent to constructing the Neumann series for the corresponding integral equation.
By using Laplace and Fourier transform methods, the distribution of unscattered particles f0, and
the distribution of particles that have undergone n-scatters, fn (n � 1), are determined for the initial
value problem in a uniform background medium. The relationship between the Green function
solutions obtained by Fedorov and Shakhov (Fedorov Yu I and Shakhov B A 1993 Proc. 23rd Int.
Cosmic Ray Conf. (Calgary) vol 3 p 215), Kota (Kota J 1994 Astrophys. J. 427 1035) and Fedorov
et al (Fedorov Yu I et al Astron. Astrophys. 302 623–34), in studies of coherent and diffusive
transport of energetic charged particles in the interplanetary medium and the multiple scattering
series is elucidated. The multiple scattering approach yields results on the number of particles that
have done n-scatters (n � 1). This information is not accessible in the Green function solutions
given by Fedorov and Shakhov and Fedorov et al in references given above.

1. Introduction

The BGK Boltzmann equation has been used to study various aspects of cosmic ray transport in
astrophysical settings. These include the derivation of diffusive transport equations for cosmic
rays that generalize the diffusive cosmic ray transport equation (Parker 1965, Gleeson and
Axford 1967, Dolginov and Toptygin 1967) to include cosmic ray viscosity and accelerating
reference frame effects (Berezhko and Krymsky 1981, Earl et al 1988, Webb 1989); models
of coherent and non-diffusive particle transport (Fisk and Axford 1969, Fedorov and Shakhov
1993, Kota 1994, Fedorov et al 1995); and nonlinear, one fluid models of cosmic ray modified
shocks (Berezhko et al 1983). The BGK Boltzmann equation in one Cartesian space dimension
is equivalent to the equation of radiative transfer (e.g., Chandrasekhar 1950, Case and Zweifel
1967). Similar equations also occur in neutron transport theory (Weinberg and Wigner 1958,
Case and Zweifel 1967).

The main aim in this paper is to provide a detailed description of the role of multiple
scattering in the time-dependent Green function solution of the BGK Boltzmann equation,
in one Cartesian space dimension, in a uniform background medium obtained by Fedorov
and Shakhov (1993) and Fedorov et al (1995). This solution is clearly of interest in radiative
transfer theory, and was used by Fedorov and co-workers in studies of solar cosmic ray transport
in the interplanetary medium. However, it should be noted at the outset, that the solution is
highly idealized, and of limited applicability in the solar cosmic ray transport context. Kota
(1994) obtained similar, idealized solutions for generalized BGK Boltzmann models with two
different scattering times τ1 and τ2. The scattering time τ1 describes particle scattering in the
same hemisphere in velocity space (either the backward or forward hemisphere), whereas τ2
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describes the scattering of particles from one hemisphere to the other hemisphere. The case
τ2 � τ1 in this model resembles highly anisotropic pitch angle scattering in which particles are
scattered slowly through θ = 90◦ pitch angle compared with scattering at other pitch angles.
Kota showed that coherent particle pulses could be obtained in BGK Boltzmann models,
provided the two scattering times τ1 and τ2 were not equal (pronounced coherent pulses were
obtained if τ2 � τ1). A brief account of the multiple scattering description of the Fedorov and
Shakhov (1993) solution is given in Webb et al (1999). The solution of the BGK Boltzmann
equation for three-dimensional geometry, with instantaneous particle injection at r = 0 was
obtained by Fedorov et al (1996).

The simplest model problem in a cosmic ray transport context, is the case of energetic
charged particle transport along a constant background magnetic field B = B0ex , directed
along the x-axis, in which the particles undergo magnetostatic scattering. In this case, the
energetic particle distribution function f (x, t; v, µ) satisfies the Fokker–Planck equation:

∂f

∂t
+ vµ

∂f

∂x
= ∂

∂µ

(
1 − µ2

2
ν
∂f

∂µ

)
≡

(
δf

δt

)(D)

c

(1.1)

where ν = 〈(�θ)2/�t〉 is the scattering frequency for particles with pitch angle θ and pitch
angle cosine µ = cos θ associated with waves or turbulence in the background flow (e.g.
Jokipii 1966, Skilling 1975). In (1.1), x and t denote the particle position and time t , and v

denotes the particle speed. More complete versions of the particle transport equation (1.1),
taking into account a non-relativistically moving background medium with velocity V (x, t),
adiabatic focusing, and energy changes due to compression or expansion, and acceleration of
the background flow, and second-order Fermi acceleration due to counter propagating Alfvén
waves are given by Skilling (1975). Cross field diffusion and particle drifts (e.g. Jokipii et al
1977) are neglected in (1.1). The BGK Boltzmann collision operator(

δf

δt

)(BGK)

c

= 〈f 〉 − f

τ
(1.2)

is sometimes used instead of the small-angle scattering collision term (δf/δt)(D)
c used in (1.1)

(e.g. Earl et al 1988, Webb 1989). In general, this is not justified in the cosmic ray transport
context, but it can be justified if one is only interested in a diffusion approximation description
at late times. In (1.2), the angular brackets on 〈f 〉 denote an average of f over µ. The BGK
Boltzmann collision term in (1.2) represents isotropic, large-angle scattering.

Both the Fokker–Planck description, using the pitch angle diffusion collision term in (1.1)
and the BGK collision term (1.2) lead to similar spatial diffusion equations describing the
particle transport at late times after the particles have undergone many scatters. The diffusion
approximation assumes that the pitch angle anisotropies are small, and that the length and
timescales for the variation of 〈f 〉 are much larger than the particle mean free path and collision
time respectively (e.g. Jokipii 1966, Hasselmann and Wibberenz 1970). The diffusion equation
description is not valid at early times, since the diffusion equation is non-causal, and has an
infinite speed for the propagation of disturbances. Telegraph equation descriptions (e.g. Fisk
and Axford 1969, Earl 1974a, b, Gombosi et al 1993, Pauls et al 1993) obtained by truncating
the eigenfunction moment equations include the effects of the particle inertia, and result in
models with a finite propagation speed for particle disturbances and incorporate diffusive-type
behaviour at late times. In general, telegraph equation models do not adequately describe large
anisotropies at early times, but they do provide an improvement over the non-causal diffusion
equation description if the particle anisotropies are small.

Coherent particle pulses occurring in interplanetary observations (Lin 1970) can only be
obtained if there is a small rate of particle scattering through the 90◦ pitch angle region of
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phase space. Coherent pulses do not occur if the scattering is isotropic (Earl 1993). Earl
(1993) has developed both Monte Carlo simulations and eigenfunction moment equations to
describe coherent particle transport (see also, Earl 1974a, b, 1989). Numerical codes (Kota
et al 1982, Ng and Wong 1979, Ruffolo 1991) have been used to investigate the particle pitch
angle evolution with application to the transport of solar cosmic rays in the interplanetary
medium. Zank et al (1999) have developed Legendre polynomial expansion solutions of the
BGK Boltzmann equation that can deal with both anisotropic distributions at early times, and
nearly isotropic, diffusive-type behaviour at late times. Scattering eigenfunction expansion
methods were used by Kirk and Schneider (1987a) to investigate the transport and acceleration
of energetic particles at relativistic shocks where the particle pitch angle anisotropies can
be large. Kirk and Schneider (1987b) carried out further studies of particle acceleration at
relativistic shocks using Monte Carlo methods.

In section 2, the BGK Boltzmann equation and model are introduced. Section 3
reformulates the BGK Boltzmann equation as an integral equation in which the distribution
at time t depends on the particle distribution function at the last scatter, and on the initial
conditions. The multiple scattering series in this development is related to the Neumann
series obtained from the iterates of the integral equation. Section 4 describes solutions of the
BGK Boltzmann equation in Laplace–Fourier transform space. The Green function G̃c for
the scattered particles, and the Green functions {G̃n} of particles that have done n-scatters are
first obtained in Fourier–Laplace space (section 4) and the corresponding solutions in (x, t)-
space are then obtained by Fourier–Laplace inversion (section 5). The Fedorov–Shakhov
solution is obtained by summing the multiple scattering series. Numerical examples illustrating
the Fedorov–Shakhov solution, and the multiple scattering approximation are developed in
section 6. Section 7 concludes with a summary and discussion.

2. Model and equations

Our main interest in this paper is with solutions of the BGK Boltzmann equation:

∂f

∂t
+ vµ

∂f

∂x
= 〈f 〉 − f

τ
+ Q (2.1)

where

〈f 〉 = 1
2

∫ 1

−1
f (x, t; v, µ) dµ µ = cos θ (2.2)

subject to the initial condition

f (x, t; v, µ) = A(x)B(µ) at time t = 0. (2.3)

In the following analysis, the particle speed is taken to be a constant parameter. In the above
equations, f (x, t; v, µ) is the velocity space distribution function at position x and time t ,
for particles with speed v and pitch angle cosine µ = cos θ ; 〈f 〉 is the mean distribution
function averaged over µ, and τ = τ(x, v) is the collision time. Fedorov and Shakhov
(1993) and Fedorov et al (1995) obtained the Green function solution G of (2.1) with source
term Q = δ(x − x0)δ(µ − µ0)δ(t), and with zero initial data (A = B = 0). Kota (1994)
considered a similar solution of the Boltzmann equation (2.1) with an isotropic source term
Q = δ(x − x0)δ(t) and also with zero inital data (A = B = 0). In this paper, we consider
the solution of the initial value problem for (2.1) in which f (x, 0; v, µ) = δ(x)δ(µ−µ0) and
with zero source term Q = 0. This latter problem yields the same Green function obtained by
Fedorov and Shakhov (1993) and Fedorov et al (1995). Thus, without loss of generality, we
consider the case Q ≡ 0, and take τ = τ(v) to be independent of x.
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3. Integral equations and multiple scattering solutions

Formally integrating the characteristics for (2.1) with Q = 0, results in the integral equation:

f (x, t; v, µ) =
∫ t

0
〈f 〉(x ′, t ′, v) exp[−(t − t ′)/τ ] dt ′ + f (x − vµt, 0; v, µ) exp(−t/τ ) (3.1)

where

x ′ = x − vµ(t − t ′) (3.2)

denotes the position of the particle at the last scatter. The second term on the right-hand side
of (3.1) represents the unscattered particles and P(t) = exp(−t/τ ) is the probability that the
initial particles have not been scattered at time t . Equation (3.1) is an integral equation for f in
which 〈f 〉 is given by (2.2). One can also average (3.1) over µ to obtain the integral equation

〈f 〉(x, t, v) = 1
2

∫ 1

−1
dµ

( ∫ t

0
〈f 〉(x ′, t ′, v) exp[−(t − t ′)/τ ] dt ′

+f (x − vµt, 0; v, µ) exp(−t/τ )

)
(3.3)

for 〈f 〉. A similar integral equation formulation of the steady state BGK Boltzmann equation
was used by Berezhko et al (1983) in a one-fluid, self-consistent model of cosmic ray modified
shocks.

To develop a multiple scattering formalism for the BGK Boltzmann equation (2.1), with
Q = 0, i.e.,

df

dt
= 〈f 〉 − f

τ

d

dt
= ∂

∂t
+ vµ

∂

∂x
(3.4)

we write the solution for f in the form

f = f0 + fc fc =
∞∑
n=1

fn (3.5)

where f0 denotes the distribution of unscattered particles and fn is the distribution of particles
that have undergonen-scatters (e.g. Kuhn 1979). From physical reasons, the partial distribution
functions {fj : j = 0, 1, 2, . . .} satisfy the coupled evolution equations

df0

dt
= −f0

τ

dfn
dt

= 〈fn−1〉
τ

− fn

τ
n � 1. (3.6)

In (3.6), the particles that have undergone (n − 1)-scatters provide a source for the particles
that will undergo n-scatters. The initial value data for (3.6) are

f0 = A(x)B(µ) fn = 0 n � 1 at time t = 0 (3.7)

since there are no scattered particles at time t = 0. The Neumann series of the Volterra-type
integral equation (3.1) for f is obtained by using the iteration scheme

f (n) = K[f (n−1)] + f0 f (0) = f0 (3.8)

where f (n) is the nth iterate and K denotes the integral (and averaging) operator in (3.1).
From (3.8),

f (N) = (I + K + K2 + · · · + KN)f0 = f0 +
N∑
n=1

fn (3.9)

where fn = Kn(f0) is the distribution of particles that have undergone n-scatters. If the
multiple scattering series (3.9) converges as N → ∞ (which it does in this paper), letting
N → ∞ in (3.9) yields the required solution of the BGK Boltzmann equation in the form (3.5).
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4. Solutions in Fourier–Laplace space

In order to solve the Boltzmann equation (3.4) and the multiple scattering equations (3.6) we
introduce the Fourier and Laplace transforms:

f̂ (k, t; v, µ) =
∫ ∞

−∞

dx

2π
exp(−ikx)f (x, t; v, µ) (4.1)

f̃ (k, s; v, µ) =
∫ ∞

0
dt exp(−st)f̂ (k, t; v, µ). (4.2)

After determining the solution for f̃ in Laplace–Fourier space, the required solution for
f (x, t; v, µ) is given by the standard inversion formula

f (x, t; v, µ) = 1

2π i

∫ c+i∞

c−i∞
ds

∫ ∞

−∞
dk exp(st + ikx)f̃ (k, s; v, µ) (4.3)

where f̃ is required to be analytic on the inversion contour (for a discussion of the conditions
under which the Fourier inversion theorem holds, and possible modifications of (4.3) to ensure
convergence of the integrals, and the regions of analyticity of the transforms, see, for example,
Morse and Feshbach (1953), volume 1).

Consider the initial value problem for (2.1)–(2.3) with Q = 0, where the particle speed v

is a constant parameter. The solution can be written in the form

f (x, t; v, µ) =
∫ 1

−1
dµ0 B(µ0)

∫ ∞

−∞
dx0 A(x0)G(x̄, t̄ , v, µ; x̄0, µ0) (4.4)

where

x̄ = x

vτ
t̄ = t

τ
(4.5)

are normalized space (x̄) and time (t̄) variables, respectively. The Green function G in (4.4)
is the solution of the Boltzmann equation (3.4) satisfying the initial conditions

G(x̄, 0, v, µ; x̄0, µ0) = δ(x − x0)δ(µ − µ0). (4.6)

Taking the Laplace and Fourier transforms of the Boltzmann equation (2.1) with zero
source term, yields the equation

G̃ − 〈G̃〉
ν + iKµ

= τĜ(k, 0, v, µ)

ν + iKµ
≡ τ exp(−iKx̄0)δ(µ − µ0)

2π(ν + iKµ)
(4.7)

where

ν = 1 + sτ K = kvτ (4.8)

are dimensionless forms of s and k, and the angular brackets on 〈G̃〉 denote an average of G̃
over µ. Averaging (4.7) over µ yields the equation

〈G̃〉[1 − a(K, ν)] = τ exp(−iKx̄0)

4π(ν + iKµ0)
(4.9)

for 〈G̃〉 where

a(K, ν) =
〈

1

ν + iKµ

〉
= 1

2iK
ln

(
ν + iK

ν − iK

)
. (4.10)

From (4.7)–(4.10) it follows that the solution for G̃ in transform space can be written in
the form

G̃ = G̃0 + G̃c (4.11)
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where

G̃0 = τ exp(−iKx̄0)δ(µ − µ0)

2π(ν + iKµ)
(4.12)

represents the unscattered particles and

G̃c = τ exp(−iKx̄0)

4π [1 − a(K, ν)](ν + iKµ)(ν + iKµ0)
(4.13)

represents the scattered particles.
Fedorov and Shakhov (1993) and Fedorov et al (1995) obtained the Green function G by

first inverting the transforms (4.11)–(4.13) with respect to s and then with respect to k. Kota
(1994) obtained a similar solution in which f = δ(x−x0) at time t = 0 (more precisely, these
authors solved the Boltzmann equation with non-zero source termsQ = δ(x−x0)δ(µ−µ0)δ(t)

and Q = δ(x − x0)δ(t) respectively, in (2.1), with zero initial data; but these problems are
equivalent to solving the homogeneous Boltzmann equation with singular initial conditions,
which is the approach adopted in this work). The solutions obtained by Fedorov and Shakhov
(1993) and Kota (1994) showed that the solution fc for the scattered particles consisted of
a superposition of slowly decaying diffusive-type modes, associated with the poles in the
complex ν-plane that occur on the resonant manifold:

D(K, ν) ≡ 1 − a(K, ν) = 0 (4.14)

plus fast decaying modes (∝ exp(−t/τ )) associated with the branch cut for a(K, ν) due to
the logarithm in (4.10), as well as other fast decaying modes associated with the poles at
ν = −iKµ and −iKµ0. From (4.10) and (4.14), the diffusive modes satisfy the dispersion
relation

ν = K cot K |K| < 1
2π (4.15)

where the restriction |K| < 1
2π is necessary if a(K, ν) is to be a single-valued function of ν

for a fixed K .
It is straightforward to verify that the diffusive eigenmode

g = exp[(νa − 1)t̄ + iKax̄]

νa + iKaµ
|Ka| < 1

2π (4.16)

where

νa = Ka cot Ka (4.17)

satisfies the BGK Boltzmann equation (2.1) with Q = 0 (see also Kota 1994). It is of interest
to note that the Fourier–Laplace transform of g:

g̃ = vτ 2δ(K − Ka)

(ν − νa)(νa + iKaµ)
(4.18)

is singular on the resonant manifold (4.14). One can verify that g̃ satisfies Fourier space
equations analogous to (4.7)–(4.9).

4.1. Multiple scattering approach

One can also solve (3.6) for the partial distributions fn of particles that have undergone n-
scatters. In Fourier–Laplace space (3.6) reduce to

G̃n = 〈G̃n−1〉
ν + iKµ

n � 1 (4.19)



Multiple scattering and the BGK Boltzmann equation 3143

for the scattered distributions, where we restrict our attention to the Green function case. The
unscattered particles G̃0 are given by (4.12). Averaging (4.19) over µ yields the recurrence
relations

〈G̃n〉 = a〈G̃n−1〉 n � 1 (4.20)

for the mean distributions 〈G̃n〉, where a(K, ν) is given by (4.10). From (4.20)

〈G̃n〉 = an〈G̃0〉 ≡ τan exp(−iKx̄0)

4π(ν + iKµ0)
. (4.21)

Using (4.21) in (4.19) yields the formula

G̃n = τan−1 exp(−iKx̄0)

4π(ν + iKµ)(ν + iKµ0)
(4.22)

for the distribution of particles that have done n-scatters (n � 1).
By summing the partial distributions G̃n we obtain

G̃c =
∞∑
n=1

G̃n =
( ∞∑

n=1

an−1

) 〈G̃0〉
ν + iKµ

= 〈G̃0〉
(1 − a)(ν + iKµ)

(4.23)

which is equivalent to (4.13) for G̃c. In order that the geometric series in (4.23) converge, it is
necessary that |a(K, ν)| < 1 on the integration path used in the inversion (4.3).

The above analysis shows that the complicated integral and averaging operator occurring
in the integral equation formulation (3.3) corresponds to multiplication by a(K, ν) in Fourier–
Laplace space. In the next section the partial distributions {Gn : n � 0} are obtained by
Fourier–Laplace inversion. By summing the multiple scattering series, we also obtain the
Green function solution form obtained by Fedorov and Shakhov (1993) and Fedorov et al
(1995). It is of interest to note that the diffusive eigenmodes (4.16), which dominate the
solution for Gc at late times, can be decomposed into a multiple scattering series, in which
each term is a fast decaying mode.

5. Green function solutions

In this section, the Green function solution G of the BGK Boltzmann equation is determined
by inverting the solution for G̃ in Fourier–Laplace space obtained in section 4. In section 5.1,
explicit formulae are obtained for the distribution of unscattered particles G0; the distribution
of particles that have undergone n-scatters {Gn : n � 1}; and the total scattered distribution
Gc, where

G = G0 + Gc Gc =
∞∑
n=1

Gn. (5.1)

In section 5.2, the Fedorov–Shakhov form of the Green function G is obtained by summing
the multiple scattering series for Gc. The detailed demonstration that the multiple scattering
series, and the Fedorov–Shakhov solution form are equivalent involves contour integration,
the details of which are described in appendix B.

5.1. The multiple scattering series

Either by inverting (4.12) (appendix A), or by using the integral equation formulation (3.1),
we find

G0 = exp(−t/τ )δ(x − x0 − vµt)δ(µ − µ0) (5.2)
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is the Green function solution for the unscattered particles.
Using the Laplace–Fourier inversion formula (4.3), in conjunction with the

expressions (4.22) for the {G̃n}, yields the distribution of particlesGn that have done n-scatters,
in the form:

Gn = exp(−t̄ )

2vτ(µ − µ0)

[
− 1

π
−
∫ 1

−1

(
1

p − µ
− 1

p − µ0

)
V −
n (y, t̄ , p)

×[H(y)H(p) − H(−y)H(−p)] dp

+V +
n (y, t̄ , µ)[H(y)H(µ) − H(−y)H(−µ)]

−V +
n (y, t̄ , µ0)[H(y)H(µ0) − H(−y)H(−µ0)]

]
(5.3)

(n � 1), where

y = x̄ − x̄0. (5.4)

The functions V ±
n (y, t̄ , p) in (5.3) are defined by the equations

V ±
n (y, t̄ , p) = V̂ ±

n (y, t̄ , p)H

(
t̄ − y

p

)
(5.5)

V̂ −
n (y, t̄ , p) = Im ([m(p) + iπ ]n−1)

[ 1
2 (y − pt̄)]n−1

(n − 1)!
(5.6)

V̂ +
n (y, t̄ , p) = Re ([m(p) + iπ ]n−1)

[ 1
2 (y − pt̄)]n−1

(n − 1)!
(5.7)

where

m(p) = ln

(
1 − p

1 + p

)
and |p| < 1. (5.8)

In the above equations H(x) denotes the Heaviside step function. The integral in (5.3) is a
Cauchy principal (CPV) integral, with singularities at p = µ and µ0, and Re (z) and Im (z)

denote the real and imaginary parts of the complex number z. The functions V ±
n (y, t̄ , p) are

only non-zero for |p|t̄ > |x̄ − x̄0|, which corresponds to the causality constraint due to the
finite particle speed v, which implies |(x̄ − x̄0)/t̄ | < |p| < 1 in the CPV integral. A sketch of
the derivation of (5.3)–(5.8) is given in appendix A.

In the next section the Fedorov and Shakhov (1993) and Fedorov et al (1995) form of the
Green function Gc is obtained from the multiple scattering series (5.1).

5.2. The Fedorov–Shakhov solution form

By inverting the transform (4.13) (first with respect to ν and then with respect to K), Fedorov
and Shakhov (1993) obtained the Green function Gc for the scattered particles in the form

Gc = exp(−t̄ )

2πvτ
−
∫ 1

−1

dp

(p − µ)(p − µ0)
sin

[
1

2
π(y − pt̄)

]
*(y, t̄, p)

+
exp(−t̄ )

2vτ(µ − µ0)

(
*(y, t̄, µ0) cos

[
1

2
π(y − µ0 t̄ )

]

−*(y, t̄, µ) cos

[
1

2
π(y − µt̄)

])
+

1

2πvτ

∫ π
2

0
dK exp[(K cot K − 1)t̄]

×cos(Ky)[cos2 K − µµ0 sin2 K] + sin(Ky) sinK cosK(µ + µ0)

(cos2 K + µ2
0 sin2 K)(cos2 K + µ2 sin2 K)

(5.9)
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where

*(y, t̄, p) =
∣∣∣∣1 − p

1 + p

∣∣∣∣
1
2 (y−pt̄)

[H(y − pt̄)H(p) − H(pt̄ − y)H(−p)]. (5.10)

The last term on the right-hand side of (5.9) (the integral from K = 0 to 1
2π ) consists of a

superposition of slowly decaying diffusive eigenmodes of the form (4.16) (see appendix B),
whereas the remaining terms on the right-hand side of (5.9) consist of fast decaying modes.
The main purpose of this section is to show how the Fedorov–Shakhov solution (5.9) arises
from summing the multiple scattering series (5.1).

To derive the solution (5.9) from the multiple scattering series, first note from (5.1) and (5.3)
that

Gc = G(CPV)
c + G(µµ0)

c (5.11)

where

G(CPV)
c =

∞∑
n=1

G(CPV)
n G(µµ0)

c =
∞∑
n=1

G(µµ0)
n . (5.12)

In (5.12) the superscripts (CPV) and (µµ0) refer to the CPV integral and non-CPV contributions
to the Gn in (5.3).

By using the identity

H [t̄ − y/p] ≡ H(p)[1 − H(y − pt̄)] + H(−p)[1 − H(pt̄ − y)] (5.13)

for the Heaviside step function H(x), the CPV sum in (5.12) may be written in the form

G(CPV)
c = exp(−t̄ )

2πvτ
−
∫ 1

−1

dp

(p − µ)(p − µ0)
sin

[
1

2
π(y − pt̄)

]
*(y, t̄, p)

−exp(−t̄ )

2πvτ

∞∑
n=1

−
∫ 1

−1

dp

(p − µ)(p − µ0)
V̂ −
n (y, t̄ , p)

×[H(y)H(p) − H(−y)H(−p)]. (5.14)

The first CPV integral on the right-hand side of (5.14) involving *(y, t̄, p) is part of the
Fedorov–Shakhov solution form (5.9).

Similarly, using the identity (5.13) in (5.3), we obtain

G(µµ0)
c = exp(−t̄ )

2vτ(µ − µ0)

(
*(y, t̄, µ0) cos

[
1

2
π(y − µ0 t̄ )

]
− *(y, t̄, µ) cos

[
1

2
π(y − µt̄)

])

+
exp(−t̄ )

2vτ(µ − µ0)
(V̂ +(y, t̄ , µ)[H(y)H(µ) − H(−y)H(−µ)]

−V̂ +(y, t̄ , µ0)[H(y)H(µ0) − H(−y)H(−µ0)]) (5.15)

for the non-CPV integral contribution to Gc, where

V̂ +(y, t̄ , µ) =
∣∣∣∣1 − µ

1 + µ

∣∣∣∣
1
2 (y−µt̄)

cos

[
1

2
π(y − µt̄)

]
. (5.16)

The terms involving * are readily recognized as part of the Fedorov–Shakhov solution
form (5.9).

Adding the CPV contribution (5.14) for Gc to the non-CPV term G
(µµ0)
c in (5.15) and

using the identity (see appendix B)

−exp(−t̄ )

2πvτ

∞∑
n=1

−
∫ 1

−1

dp

(p − µ)(p − µ0)
V̂ −
n (y, t̄ , p)[H(y)H(p) − H(−y)H(−p)]
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+
exp(−t̄ )

2vτ(µ − µ0)
(V̂ +(y, t̄ , µ)[H(y)H(µ) − H(−y)H(−µ)]

−V̂ +(y, t̄ , µ0)[H(y)H(µ0) − H(−y)H(−µ0)])

= 1

2πvτ

∫ π
2

0
dK exp[(K cot K − 1)t̄]

×cos(Ky)[cos2 K − µµ0 sin2 K] + sin(Ky) sinK cosK(µ + µ0)

(cos2 K + µ2
0 sin2 K)(cos2 K + µ2 sin2 K)

(5.17)

yields the solution (5.9) for Gc obtained by Fedorov and Shakhov (1993).
The solution (5.9) obtained by Fedorov and Shakhov (1993) consists of a sum of non-

causal terms, namely the diffusive eigenmodes contribution (the integral from K = 0 to 1
2π ),

and the remaining terms involving *(y, t̄, p). Most of the separate terms in (5.9) are non-zero
for |x̄ − x̄0| > t̄ . However, the total expression for Gc clearly satisfies the causality constraint
that Gc = 0 for |x̄ − x̄0| > t̄ , since it is equivalent to summing the multiple scattering series
(note that each term in the multiple scattering series is zero for |x̄ − x̄0| > t̄).

5.3. Alternative form for Gn

The Fedorov–Shakhov solution (5.9) for the total scattered particle Green functionGc, consists
of a superposition of fast decaying modes, plus more slowly decaying diffusive eigenmodes
(the integral fromK = 0 to 1

2π in (5.9)). This suggests that the Green functionGn for particles
that have done n-scatters can be rewritten in a form that emphasizes the diffusive eigenmodes.
Using (B.9)–(B.12) and the results of section 5.2, the Green function Gn in (5.3) can be written
in the form

Gn = In−1 +
exp(−t̄ )

2vτ(µ − µ0)

[
1

π
−
∫ 1

−1
dp

(
1

p − µ
− 1

p − µ0

)
×V̂ −

n (y, t̄ , p)[H(y − pt̄)H(p) − H(pt̄ − y)H(−p)]

+V̂ +
n (y, t̄ , µ0)[H(y − µ0 t̄ )H(µ0) − H(µ0 t̄ − y)H(−µ0)]

−V̂ +
n (y, t̄ , µ)[H(y − µt̄)H(µ) − H(µt̄ − y)H(−µ)]

]
(5.18)

where y = x̄ − x̄0, and

In−1 = exp(−t̄ )

2πvτ

1

(n − 1)!

∫ π
2

0
dKRe

(
(iKy + K cot Kt̄)n−1

(cosK + iµ sinK)(cosK + iµ0 sinK)

)
(5.19)

(see appendix B). The alternative form for In−1 in (B.11) corresponds to the solution form (5.3)
for Gn.

The integral In−1 in (5.18) and (5.19) dominates the late-time behaviour of Gn. In fact,
Gd = ∑∞

n=1 In−1 gives the diffusive eigenmode contribution to Gc in the Fedorov–Shakhov
solution (5.9) (the integral from K = 0 to 1

2π in (5.9); see also appendix B). Thus, (5.18)
and (5.19) provide an alternative representation of Gn to that in (5.3) which emphasizes the
late-time behaviour and the diffusive eigenmodes.

6. Numerical examples

Figure 1 shows some of the main features of the Fedorov–Shakhov solution (5.9) and (5.10)
for the Green function Gc of scattered particles. The figure shows the variation of Gc as a
function of t̄ for a range of pitch angle cosines µ (µ = −0.98, 0.001, 0.49 and 0.98) at position
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Figure 1. The scattered Green function Gc of (5.9) versus normalized time t̄ . The parameters used
are x̄0 = 0, x̄ = 1, µ0 = 0.99, and the different curves are for µ = −0.98, 0.001, 0.49 and 0.98.

x̄ = 1, for particles initially located at x̄0 = 0 with µ = µ0 = 0.99 at time t = 0 (Fedorov
and Shakhov (1993) and Fedorov et al (1995) show similar figures). The main points to note
are the strongly anisotropic character of the distribution at early times (1 < t̄ < 2 say), and
the near isotropy of the distributions at late times (t̄ ∼ 10). This is intuitively expected since
at early times, the particles will have undergone only a few scatters, and consequently are still
highly beamed about the initial particle direction with µ = µ0 = 0.99, whereas at late times
the particles are isotropized by many scatters.

Figure 2 shows further examples of the Fedorov–Shakhov solution for Gc at x = 0.001
and at x = −1, for the same values of µ and µ0 as in figure 1 (x0 = 0, µ0 = 0.99; µ = −0.98,
0.001, 0.49, and 0.98). In figure 2(a) (x = 0.001), the distribution for Gc for µ = 0.001 has
discontinuities at t̄ = x̄/µ = 1, and at t̄ = x̄/µ0 = 1.0101 × 10−3, which is similar to the the
curve µ = 0.49 in figure 1, where x̄ = 1. These discontinuities are due to particles that have
undergone a single scatter (i.e. G1). The curve for Gc for µ = 0.001 in the top panel exhibits
two maxima: one near t̄ = x̄/µ0 = 1.0101 × 10−3, due to particles that have experienced
a single scatter, and one at t̄ � 2.5 due to particles that have undergone multiple scatters.
Figure 2(b) (x̄ = −1) indicates that at early times, the almost backward propagating particles
with µ = −0.98, dominate the distribution Gc. The peak in the distribution for µ = −0.98,
is presumably due to particles initially moving in the forward direction with µ � µ0 = 0.99
which have undergone a single scatter.

Figure 3 shows again the curve µ = 0.49 for Gc in figure 1, and the distributions
{Gn : 1 � n � 10} of particles that have done n-scatters, as functions of t̄ . Also shown
for comparison is the approximate solution

SN =
N∑
n=1

Gn (6.1)

obtained by summing the multiple scattering series. In the example in figure 3, the approximate
solution S10 is shown by the dotted curve. As in figure 1, x̄0 = 0, x̄ = 1, and µ0 = 0.99. The
distributions were evaluated numerically using the solution form (5.18) and (5.19). Note that
both Gc = 0 and Gn = 0 for t̄ < |x̄| due to the causality constraint that the particle cannot
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Figure 2. The Green function Gc of (5.9) versus t̄ . The parameters are the same as in figure 1,
except that x̄ = 0.001 in (a) and x̄ = −1 in (b). As in figure 1, µ0 = 0.99, x̄0 = 0 and µ = −0.98,
0.001, 0.49 and 0.98.

travel a distance �x > vt in time t . At early times the solution for Gc and the approximation
SN in figure 3, are dominated by the Green G1 representing particles that have undergone a
single scatter. From (5.3)–(5.7), G1 is given by

G1 = exp(−t̄ )

2vτ(µ − µ0)

[
H

(
t̄ − y

µ

)
[H(y)H(µ) − H(−y)H(−µ)]

−H

(
t̄ − y

µ0

)
[H(y)H(µ0) − H(−y)H(−µ0)]

]
(6.2)

where y = x̄ − x̄0. For the example in figure 3, G1 is only non-zero for t̄ in the range

1 <
x̄

µ0
< t̄ <

x̄

µ
. (6.3)

In this case, G1 may be written in the simpler form

G1 = exp(−t̄ )

2vτ(µ − µ0)

[
H

(
t̄ − x̄

µ

)
− H

(
t̄ − x̄

µ0

)]
. (6.4)

Thus, the solution for G1 consists of an exponentially damped profile in t̄ , with cut-offs in t̄ at
t̄ = x̄/µ0 and at t̄ = x̄/µ. In the limit as µ → µ0 in (6.4),

G1 → x̄ exp(−t̄ )

2vτµ2
0

δ

(
t̄ − x̄

µ0

)
(6.5)

so thatG1 is singular asµ → µ0. There is no CPV integral contribution toG1 in (5.3), or (6.2),
because V̂ −

1 = 0 and V̂ +
1 = 1 in (5.3).

At late times t̄ � |x̄ − x̄0|, the solution for Gc is roughly approximated by the diffusion
equation Green function, i.e.,

Gc � 1

4(πκt)
1
2

exp

(
− (x − x0)

2

4κt

)
(6.6)

where κ = v2τ/3 is the diffusion coefficient (see, for example, appendix C). In figure 3,
Gc � 0.1 at t̄ = 6, whereas the diffusion approximation (6.6) yields Gc ∼ 0.08. The
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Figure 3. The plot shows Gc and {Gn : 1 � n � 10} of particles that have done n-scatters, and the
approximation S10 of particles that have done N = 10 scatters (the dotted curve). The parameters
are x̄ = 1, x̄0 = 0, µ0 = 0.99 and µ = 0.49 (this corresponds to the curve µ = 0.49 in figure 1).

results in figure 3 indicate that the sum of the first ten terms of the multiple scattering
series yields a reasonable approximation for Gc for 1 < t̄ < 6, and x̄ = 1. However,
as t̄ increases, substantially more terms in the multiple scattering series are required for
a good approximation to Gc. Other approximate solutions based on Legendre polynomial
or eigenfunction expansions (e.g. Earl 1974, Weinberg and Wigner 1958), and perturbation
methods using both eigenfunction expansions and scale analysis (e.g. Gombosi et al 1993)
are useful in obtaining diffusion equation or telegraph equation approximations. Kota (1994)
discusses the telegraph equation result of Gombosi et al (1993) by expanding the diffusive
eigenmode dispersion equation (4.15) for small s and K (see also appendix C). A recent
exposition of Legendre polynomial expansion solution techniques for the BGK Boltzmann
equation that can deal with both anisotropic solutions at early times, and nearly isotropic
distributions at late times has been developed by Zank et al (1999).

Figure 4 shows further examples of the decomposition of the solutions for Gc into its
multiple scattering components Gn. The parameters are the same as in figure 1 (i.e. x̄0 = 0,
x̄ = 1, µ0 = 0.99; the different panels are for µ = −0.98, 0.001, 0.49 and 0.98). The dotted
curves correspond to the multiple scattering series approximation (6.1) with N = 10 terms,
which is a good approximation to Gc for 1 < t̄ < 6. At early times, the distributions for Gc

are anisotropic, and are in general of larger amplitude in the forward direction (figures 4(c) and
(d)) than in the transverse (figure 4(b)) and backward direction (figure 4(a)). For µ = 0.98
(figure 4(d)), the distribution G1 is a very narrow, large amplitude pulse (from (6.3), the
maximum height of the pulse is Gc = 18.21 at time t̄ = x̄/µ0 = 1.0101, and G1 �= 0 for
1.0101 < t̄ < 1.0204). From (6.2),

G1 = exp(−t̄ )

2vτ(µ0 − µ)
H

(
t̄ − x̄

µ0

)
(6.7)

for µ < 0, µ0 > 0, x̄0 = 0 and x̄ > 0. Thus, G1 has no upper cut-off in t̄ in figure 4(a). Again
note that Gc is nearly isotropic at the larger values of t̄ (Gc ∼ 0.1 at t̄ = 6), as expected from
the diffusion equation approximation (6.6).



3150 G M Webb et al

Figure 4. The plot shows examples ofGc and {Gn : 1 � n � 10} versus t̄ . The dotted curves show
the approximations S10 of particles that have done at most N = 10 scatters (the dotted curves).
The parameters are the same as in figure 1 (x̄0 = 0, x̄ = 1, µ0 = 0.99, and the different plots
((a)–(d)) are for µ = −0.98, 0.001, 0.49 and 0.98).

Although the use of N = 10 terms in the series (6.1) suffices for 1 < t̄ < 6 in figures 3
and 4, a larger number of terms is needed to obtain an accurate solution for larger t̄ . This
is illustrated in figure 5, which shows the Fedorov–Shakhov solution Gc, the distributions
{Gn : 1 � n � 10}, and the approximation S10 (the dotted curve) for case µ = 0.001
of figure 4, with 1 < t̄ < 20. Clearly, more terms are needed in the multiple scattering
series for t̄ > 7. Figure 6 shows the improvement over the approximation SN used in
figure 5 obtained by using successively larger values of N (N = 10, 15, 20, 25). The curve
corresponding to N = 30 (unlabelled), is almost indistinguishable from the full solution for
Gc for 1 < t̄ < 20.

Figures 7 and 8 show further examples of the convergence of the multiple scattering
series for µ = 0.49, µ0 = 0.99 and x̄ = −1 (compare with the bottom panel of figure 2).
Figure 7 shows the total scattered distribution Gc; the distributions {Gn : 1 � n � 10} and
the approximation S10 (the dotted curve). Note that in figure 7, G1 = 0, and the scattered
particles have done n � 2 scatters. This is intuitively expected, since the original particles with
µ = µ0 > 0, must scatter into the µ < 0 hemisphere to reach x = −1, and hence particles
with µ > 0 at x = −1 must have done at least two scatters. The approximation S10 in figure 7
is a reasonable approximation for 1 < t̄ < 5, but the approximation quickly degenerates in
accuracy with increasing t̄ > 5. Figure 8 shows the improvement of the approximation SN
(the dotted curves) as N increases (N = 10, 15, 20, 25 and 30).

7. Summary and concluding remarks

In this paper, we have provided a multiple scattering formulation for the BGK Boltzmannn
equation. The main aim of the paper was to provide the distributions of particles that have
done n-scatters for the Green function solution investigated by Fedorov and Shakhov (1993)
and Fedorov et al (1995). This information is not accessible in the solution form given by the
above authors.
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Figure 5. The plot shows Gc and {Gn : 1 � n � 10}, and the approximation S10 of particles that
have done at most N = 10 scatters (the dotted curve) as functions of t̄ for the case µ = 0.001. The
other parameters are the same as in figure 1 (x̄ = 1, x̄0 = 0, µ0 = 0.99). Note that S10 is a good
approximation for 1 � t̄ � 5, but a poor approximation for much larger t̄ .

Figure 6. The plot shows how the multiple scattering series approximation SN of (6.1) (the dotted
curves) improves with increasing N (N = 10, 15, 20, 25, 30). The pitch angle cosine µ = 0.001
and the other parameters are the same as in figure 1.

In the multiple scattering method, the distribution function f = f0 + fc is split up into
scattered (fc) and unscattered (f0) particles. The scattered distribution fc = ∑∞

n=1 fn is
split up into particles that have done n-scatters {fn}, where n = 1, 2 . . . . Thus, the multiple
scattering series provides statistical details of the complete solution for f , that are not readily
apparent using other methods (one could, of course, obtain similar information by using Monte
Carlo methods, in which the path of individual particles is monitored).
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Figure 7. The same as figure 5, except that x̄ = −1 and µ = 0.49.

Figure 8. The same as figure 6, except that x̄ = −1 and µ = 0.49.

In the multiple scattering approach, the unscattered particles f0 provide a source for the
particles f1 that undergo a single scatter, and consequently, the unscattered particles decay
exponentially as f0 ∝ exp(−t/τ ). The evolution equation for particles that have done n-
scatters has the same form as the usual Boltzmann equation, except that the particles scattered
into a given phase-space volume element consist of the particles that have done (n−1)-scatters
(fn−1), whereas the particles scattered out of the same phase-space volume element are particles
of the nth scattered generation (fn). This leads to an infinite coupled set of Boltzmann-like
evolution equations (3.6). This system of equations may be solved sequentially proceeding
from the n = 0 equation for the unscattered particles, and then proceeding to solve for the
higher-order scattered distributions.
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By integrating along the characteristics, the Boltzmann equation (2.1) may be cast in the
form of an integral equation (3.1), in which f is given as an integral over 〈f 〉 at the last
scatter, multiplied by the probability that the particle remain unscattered in travelling from the
position of the last scatter to its present position, plus an exponentially decaying distribution
of the initial unscattered particles. The Neumann series obtained by iteration of this integral
equation yields the multiple scattering series, in which the N th iterate SN = ∑N

n=0 fn, yields
the approximate solution of the Boltzmann equation consisting of particles that have done at
most N -scatters. By letting N → ∞, in the sequence of partial sums SN , yields the complete
solution for f in the form: f = limN→∞ SN = f0 + fc.

The multiple scattering equations for the Green functions {Gn} of particles that have done
n-scatters were first solved by using Fourier and Laplace transforms to obtain the required
solutions {G̃n} in transform space. The solutions in (x, t)-space were then obtained by Fourier–
Laplace inversion (section 5). The solutions for the {G̃n} in transform space form a geometric
progression: G̃n = a(K, ν)G̃n−1, with common ratio a(K, ν) (K and ν = 1 + sτ are the
Fourier and Laplace transform variables), and the solution G̃c for the total scattered Green
function depends on the singular resonant manifold D(K, ν) = 1 − a(K, ν) = 0, associated
with slowly decaying diffusive eigenmodes in (x, t)-space (see also Kota 1994). The total
scattered Green function G̃c = ∑∞

n=1 G̃n may also be obtained by use of the usual formula for
the sum of a geometric progression.

The Green function Gn in (x, t)-space can be expressed in two different forms: the first
form (5.3) shows that Gn �= 0 for |x − x0| < vt and Gn = 0 for |x − x0| > vt , which
corresponds to the causality constraint that particles with speed v travel at most a distance
|x−x0| = vt in time t . The second form of Gn in (5.18) emphasizes the diffusive behaviour of
Gn at late times t . This second form of Gn is directly related to the form of the total scattered
Green function Gc (5.9) obtained by Fedorov and Shakhov (1993) and Fedorov et al (1995),
which also emphasizes the diffusive character of Gc at late times. The Fedorov and Shakhov
(1993) solution for Gc in this paper was obtained by summing the multiple scattering series.

At early times, relatively few terms of the multiple scattering series are required to obtain
a good approximation to the solution for Gc (see figures 3 and 4). The cut-offs in the plots of
Gc as a function of t (figure 3) at t = x/(vµ0) and at t = x/(vµ) are associated with G1, the
particles that have done a single scatter. These particles dominate Gc at early times. The plots
of {Gn} as functions of t have single maxima, with Gn → 0 as t → |x−x0|/v and as t → ∞.
The maxima occur at successively later times as n increases. At late times t � |x − x0|/v, Gc

may be approximated by the heat equation Green function (6.6). As t increases, it is necessary
to use more terms of the multiple scattering series in order to obtain a good approximation to
the total scattered Green function Gc (figures 6 and 8).

The multiple scattering approach can be applied to other transport phenomena governed by
the Boltzmann equation (e.g. Kuhn 1979), such as radiative transfer (Chandrasekhar 1950) and
neutron transport theory (Case and Zweifel 1967, Weinberg and Wigner 1958). In particular, it
is of interest to use the multiple scattering approach to study the generalized BGK Boltzmann
model of Kota (1994), in which there are two scattering timescales τ1 and τ2, where τ1

describes particle scattering in the same hemisphere in velocity space (either the backward or
forward hemisphere) and τ2 describes scattering from one hemisphere to the other hemisphere.
Chandrasekhar (1943) described stochastic transport phenomena in terms of an integral
equation, in which the probability distribution ψ , at a particular phase space point is given by
an integral overψ at other points in phase space times a transition probability. Chandrasekhar’s
integral equation may be used to derive Fokker–Planck equations of the form (1.1) describing
the pitch angle scattering of cosmic rays (Jokipii 1966). In principle, a multiple scattering
approach associated with an iterative solution of Chandrasekhar’s equation could be developed.
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The relationship between path integral formulations of stochastic processes (Graham 1977,
Zhang 1999), and Monte Carlo type methods associated with Itô’s formulation of stochastic
differential equations (e.g. Kloeden and Platen 1992, Krülls and Achterberg 1994) and multiple
scattering is also of interest.
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Appendix A

In this appendix we sketch the derivation of the results (5.2) and (5.3) for the unscattered Green
function G0 and the Green function Gn for n-scatters.

Using the inversion formula (4.3) and expression (4.12) for G̃0 yields the result

G0 = exp(−t̄ )δ(µ − µ0)

2πvτ

∫ c+i∞

c−i∞

dν

2π i

∫ ∞

−∞
dK

exp[νt̄ + iK(x̄ − x̄0)]

ν + iKµ
(A.1)

for the unscattered distribution G0. Carrying out the inversion first with respect to ν in (A.1),
taking into account the pole at ν = −iKµ yields

G0 = exp(−t̄ )δ(µ − µ0)

vτ

∫ ∞

−∞

dK

2π
exp[iK(x̄ − x̄0 − µt̄)]

≡ exp(−t̄ )δ(µ − µ0)δ(x − x0 − vµt) (A.2)

which is the Green function (5.2) for the unscattered particles.
To invert the transform (4.22) for G̃n, the multi-valued function a(K, ν) in (4.10), namely

a(K, ν) = ζ

2iK
ζ = ln

(
K − iν

K + iν

)
+ iπ (A.3)

needs to be chosen so that |a(K, ν)| < 1 on the integration path in the inversion formula (4.3)
in order to ensure that the geometric series (4.23) for the total scattered distribution converges.
In (4.3) we carry out the integration first with respect to K , keeping s (or ν) fixed. We choose
the branch cut for ζ in (A.3) to consist of two disjoint segments of the Im (K) axis with
|Im (K)| > ν, where K = ±iν are the location of the branch points. In principle, there
could be an extra phase factor of 2nπ i to ζ in (A.3) (n integer), but in fact it is necesssary
to choose n = 0, in order to ensure |a(K, ν)| < 1 on the Re (K) axis. One can show
limK→0 a(K, ν) = 1/ν, where ν = 1 + sτ ; |a(K, ν)| → 0 as |K| → ∞. On the branch cut

K = iν/p |p| � 1. (A.4)

On either side of the branch cut,

ζ →
{
m(p) + iπ if K = iν/p + ε

m(p) − iπ if K = iν/p − ε
(A.5)

where ε ↓ 0, and m(p) = ln |(1 − p)/(1 + p)|. From (4.22) G̃n has poles located on the
branch cut at

K = Kµ = i
ν

µ
and K = Kµ0 = i

ν

µ0
(A.6)
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Figure 9. Contours in the complex K-plane used in the inversion of the transform (4.22) for G̃n,
using the inversion formula (4.3). For x̄ > x̄0 the contour AB is closed in the Im (K) > 0 half
plane, but if x̄0 > x̄, the contour is closed in the lower half K-plane (Im (K) < 0). The branch
points for the complex function ζ occur at points D and H where K = ±iν, and the branch cut is
along the Im (K) axis in the region |Im (K)| > ν. The integrand has poles at K = Kµ = iν/µ and
K = Kµ0 = iν/µ0 located on the branch cut (in the figure 0 < µ < µ0 < 1 has been assumed).

that need to be taken into account when inverting G̃n using (4.3). The integration contour used
in (4.3) when inverting G̃n is illustrated in figure 9. Closing the contour in the Im (K) > 0
half plane if x − x0 > 0, and in the lower half plane Im (K) < 0 if x − x0 < 0, and using
Cauchy’s theorem we obtain

Gn = exp(−t̄ )

2π iτ

∫ c+i∞

c−i∞
dν exp(νt̄)G̃n(x̄, ν, µ,µ0) (A.7)

where

G̃n = i

4πvνn
−
∫ 1

−1

dp

(p − µ)(p − µ0)

{
exp[−ν(x̄ − x̄0)/p]

(
−1

2
p

)n−1

×([m(p) + iπ ]n−1 − [m(p) − iπ ]n−1)

×[H(x̄ − x̄0)H(p) − H(x̄0 − x̄)H(−p)]

}

+
Fn(x̄, x̄0, ν;µ)

µ − µ0
[H(x̄ − x̄0)H(µ) − H(x̄0 − x̄)H(−µ)]

−Fn(x̄, x̄0, ν;µ0)

µ − µ0
[H(x̄ − x̄0)H(µ0) − H(x̄0 − x̄)H(−µ0)] (A.8)

and

Fn(x̄, x̄0, ν;µ) = 1

2vνn
exp[−ν(x̄ − x̄0)/µ]

(
−1

2
µ

)n−1

Re ([m(µ) + iπ ]n−1) (A.9)

(note Fn(x̄, x̄0, ν;µ0) is obtained by replacing µ → µ0 in (A.9)). The CPV integral in (A.8)
arises from integrating along the branch cut, and the Fn terms are due to the poles (A.6).

Using the inverse Laplace transform

1

2π i

∫ c+i∞

c−i∞
dν

exp(νλ)

νn
= λn−1

(n − 1)!
H(λ) (A.10)

to carry out the inverse Laplace transform (A.7) yields the results (5.3)–(5.8) for Gn.
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Appendix B

In this appendix we prove the identity (5.17), which links the multiple scattering
decomposition (5.1) for the Green function Gc to the Fedorov and Shakhov (1993) solution
form (5.9). First note that the right-hand side of (5.17), (which we denote by Gd ) may be
written in the alternative form:

Gd = 1

2πvτ

∫ π
2

0
dK exp[(K cot K − 1)t̄]

×{cos(Ky)[cos2 K − µµ0 sin2 K] + sin(Ky) sinK cosK(µ + µ0)]}
(cos2 K + µ2

0 sin2 K)(cos2 K + µ2 sin2 K)

= 1

4πvτ

∫ π
2

− π
2

dK
K2

sin2 K

(
exp[(ν − 1)t̄ + iKy]

(ν + iKµ)(ν + iKµ0)

)
ν=K cot K

. (B.1)

Note that the second form of Gd in (B.1) is a superposition of diffusive eigenmodes of the
form (4.16), associated with the resonant manifold ν = K cot K .

To prove (5.17) we consider first the case y = x̄ − x̄0 > 0. By making a change of
integration variable of the form

w = exp(iK) (B.2)

in (B.1) we obtain

Gd = exp(−t̄ )H(y)

iπvτ(1 + µ)(1 + µ0)

∫
C

dw
w exp{[y − t̄ (1 + w2)/(1 − w2)] lnw}

(w + iwµ0)(w − iwµ0)(w + iwµ)(w − iwµ)
(B.3)

where

wµ =
(

1 − µ

1 + µ

) 1
2

wµ0 =
(

1 − µ0

1 + µ0

) 1
2

. (B.4)

In (B.3), the contour C in the complex w-plane consists of a semi-circular arc of unit radius
(|w| = 1) in the Re (w) > 0 half plane with endpoints at w = ±i. A schematic of the contour
C and the pole locations at w = ±iwµ0 and at w = ±iwµ are displayed in figure 10.

For y = x̄ − x̄0 < 0, we use an equivalent integral representation for Gd , by using the
integration variable

w̃ = exp(−iK) (B.5)

in (B.1) to obtain

Gd = exp(−t̄ )H(y)

iπvτ(1 − µ)(1 − µ0)

∫
C̃

dw̃
w̃ exp{[−y − t̄ (1 + w̃2)/(1 − w̃2)] ln w̃}

(w̃ + iw̃µ0)(w̃ − iw̃µ0)(w̃ + iw̃µ)(w̃ − iw̃µ)
(B.6)

where

w̃µ =
(

1 + µ

1 − µ

) 1
2

w̃µ0 =
(

1 + µ0

1 − µ0

) 1
2

. (B.7)

and the contour C̃ in the complex w̃-plane is essentially of the same form as in figure 10, except
that the poles now occur at w̃ = ±iw̃µ0 and at w̃ = ±iw̃µ.

If y = x̄ − x̄0 > 0, the expression (B.3) is used for Gd , and the contour C (i.e. ABC)
is closed by the path COA in figure 10. If y = x̄ − x̄0 > t̄ , the integrand is bounded at
w = 0. If t̄ > x̄ − x̄0 (i.e. the causal case for which Gc �= 0), the integrand (B.3) diverges as
w → 0. However, if the exponential function in (B.3) is expanded using the Taylor series for
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WI

B

C

A

cµ0

cµ

WR

c
+

µ

c
+

—

—

µ0

O

Figure 10. Contour path ABCOA in the complex w = wR + iwI -plane used in transforming the
contour integral (B.3). The contour C in (B.3) consists of the semi-circular arc ABC in wR > 0,
with centre w = 0, and radius |w| = 1. The small semi-circular arcs C±

µ and C±
µ0

are indentations
around the poles at w = ±iwµ and w = ±iwµ0 (0 < µ < 1 and 0 < µ0 < 1 in the diagram). If
−1 < µ < 0, the poles w = ±iwµ lie on the wI -axis, in the region |wI | > 1, and similarly for the
location of the poles w = ±iwµ0 .

the exponential function, each individual term in the series results in a bounded integrand at
w = 0, since

lim
w→0

w[ln(w)]n = 0 (B.8)

for each positive integer n. A similar strategy can be used in the case y = x̄ − x̄0 < 0, where
the divergence of the exponential function in (B.6) as w̃ → 0 for t̄ > x̄0 − x̄, may be dealt
with in a similar fashion. Using Cauchy’s theorem for the closed contour, we obtain

Gd =
∞∑
n=0

In (B.9)

where

In = − exp(−t̄ )H(y)

iπvτ(1 + µ)(1 + µ0)n!

∫
COA

dw
w{[y − t̄ (1 + w2)/(1 − w2)] lnw}n

(w + iwµ)(w − iwµ)(w + iwµ0)(w − iwµ0)

− exp(−t̄ )H(−y)

iπvτ(1 − µ)(1 − µ0)n!

×
∫

C̃ÕÃ
dw̃

w̃{[−y − t̄ (1 + w̃2)/(1 − w̃2)] ln w̃}n
(w̃ + iw̃µ)(w̃ − iw̃µ)(w̃ + iw̃µ0)(w̃ − iw̃µ0)

. (B.10)

Taking into account the indentations around the poles on the path COA in the complex
w-plane (and similarly for the corresponding path C̃ÕÃ in the w̃-plane), we find

In−1 = exp(−t̄ )

2vτ(µ − µ0)

[
− 1

π
−
∫ 1

−1
dp

(
1

p − µ
− 1

p − µ0

)
V̂ −
n (y, t̄ , p)

×[H(y)H(p) − H(−y)H(−p)]

+V̂ +
n (y, t̄ , µ)[H(y)H(µ) − H(−y)H(−µ)]
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−V̂ +
n (y, t̄ , µ0)[H(y)H(µ0) − H(−y)H(−µ0)]

]
(B.11)

where y = x̄ − x̄0 and V̂ ±
n are defined in (5.6) and (5.7).

Using Cauchy’s theorem for the closed path COABC in the complex w-plane in figure 10
for the case y > 0, and the corresponding path C̃ÕÃB̃C̃ in the w̃-plane if y < 0, the integral
(B.10) may be written in the alternative form

In−1 = exp(−t̄ )

2πvτ

1

(n − 1)!

∫ π
2

0
dKRe

(
(iKy + K cot Kt̄)n−1

(cosK + iµ sinK)(cosK + iµ0 sinK)

)
. (B.12)

The form (B.12) is useful in determining the behaviour of the Green function Gn at late times
(see (5.18) et seq.).

Using the result (B.11) in (B.9), and summing over n yields the result

Gd = −exp(−t̄ )

2πvτ

∞∑
n=1

−
∫ 1

−1

dp

(p − µ)(p − µ0)
Im

{
((y − pt̄)[m(p) + iπ ])n

2nn!

}
×[H(y)H(p) − H(−y)H(−p)]

+
exp(−t̄ )

2vτ(µ − µ0)

{ ∣∣∣∣1 − µ

1 + µ

∣∣∣∣
1
2 (y−µt̄)

cos

[
1

2
π(y − µt̄)

]
×[H(y)H(µ) − H(−y)H(−µ)]

−
∣∣∣∣1 − µ0

1 + µ0

∣∣∣∣
1
2 (y−µ0 t̄ )

cos

[
1

2
π(y − µ0 t̄ )

]

×[H(y)H(µ0) − H(−y)H(−µ0)]

}
. (B.13)

This establishes the identity (5.17).

Appendix C

In this appendix we discuss the late time behaviour ofGc and 〈f 〉. We first discuss the resonant
manifold or dispersion equation (4.14) for the diffusive type eigenmodes, and its relation to
the diffusion equation and telegraph equation approximations. We also derive the approximate
Green function (6.6) for Gc applicable for late times t .

First note (see also Kota 1994), that the resonant manifold (4.14) for the diffusive
eigenmodes, namely

ν ≡ 1 + sτ = K cot K |K| < 1
2π (C.1)

for small K may be expanded as

sτ = −K2

3
− K4

45
+ O(K6) (C.2)

(Abramowitz and Stegun 1965, p 75, formula 4.3.70). Neglecting O(K4) terms in (C.2), the
dispersion relation (C.2) in real (x, t)-space implies that the diffusive eigenmodes g in (4.16),
at late times (s → 0, K → 0, t → ∞) satisfy the diffusion equation

gt − κgxx = 0 (C.3)

where κ = 1
3v

2τ . If one retains the O(K4) term in (C.2), and uses the lowest-order balance
sτ ∼ 1

3K
2, then at the next order (C.2) can be approximated by

sτ = −K2

3
− s2τ 2

5
+ O(K4). (C.4)



Multiple scattering and the BGK Boltzmann equation 3159

The dispersion equation (C.4) in (x, t)-space is equivalent to the telegraph equation for 〈f 〉
obtained by Gombosi et al (1993) (see also, Kota 1994).

The Green function (6.6) can be derived by using the approximate dispersion relation
sτ � − 1

3K
2 appropriate for late times and directly invert the transform (4.13). An alternative,

simpler procedure is to note that at late times the Fedorov–Shakhov solution (5.9) and (5.10)
is dominated by the diffusive eigenmodes (the integral from K = 0 to 1

2π ). Thus at late times

Gc � Gd = 1

2πvτ

∫ π
2

0
dK exp[(K cot K − 1)t̄]

×cos(Ky)[cos2 K − µµ0 sin2 K] + sin(Ky) sinK cosK(µ + µ0)

(cos2 K + µ2
0 sin2 K)(cos2 K + µ2 sin2 K)

. (C.5)

For large times t̄ , the integral (C.5) is dominated by the value of the integrand in the
neighbourhood of K = 0, so that

sτ ≡ K cot K − 1 � −K2

3
(C.6)

cosK � 1, sinK � 0 may be used near K = 0. Using these approximations, and extending
the upper limit on the integral at K = 1

2π to K = ∞ in (C.5) yields the approximation

Gc � 1

2πvτ

∫ ∞

0
dK exp

(
−K2 t̄

3

)
cos(Ky)

≡ 1

4πvτ

∫ ∞

−∞
dK exp

(
−K2 t̄

3
+ iKy

)
. (C.7)

It is straightforward to show that (C.7) is equivalent to the diffusion equation Green
function (6.6).
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